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This talk is based on results obtained in 
the following articles: 

Phys. Rev. D 95, 064033 (2017)  

Phys. Rev. D 92, 083533 (2015)  
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Quasi-spherical 
Szekeres models 



Cosmic structure: web of voids, walls & filaments

Newtonian n-body simulations provide a good description with lots of detail

Source: R. van de Weygaert & W Schaap, in Data Analysis and Cosmology 
(eds  V Martínez, E Saar, E, Martínez-González, M. Pons-Bordería, Springer 
Verlag, Berlin, Lecture Notes on Physics 665 (2009) p 291

	 .	 C.S. Frenk and S.D.M. White, Ann Phys, 524, 507534 (2012) 	          

Galactic surveys involving hundreds of millions of galaxies



Can we hope to provide a “decent” (at least 
coarse grained) description of cosmic structure 
with an exact solution of Einstein’s equations?

YES, with Szekeres models !!
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It is easier to work in spherical coordinates

Angular extrema = extrema at each 2-sphere r = const.

The Szekeres dipole  W defines a precise direction in 3d
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defines two curves 
that depend on the 
choice of X, Y, Z
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Surfaces  r constant are 2-spheres

Non-sphericity — way in which 2-spheres foliate time slices 

Compare proper radial length ` =

Z r

0

p
grrdr

Spherical symmetry:  CONCENTRIC 2-spheres 

` = `(r)
radial rays are 
ORTHOGONAL!
to 2-spheres 
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dt = dr = 0 )
ds2 = a2 r2 (d✓2 + sin2 ✓ d�2)

Szekeres geometry:  NON-CONCENTRIC  2-spheres 

` = `(r, ✓,�)
radial rays are  
NOT ORTHOGONAL!
to 2-spheres 



We now concentrate 
on the density:

Over-density =  density maximum

Density void =  density minimum

Transition =  density saddle

Necessary & sufficient conditions for the 3-d spatial extrema of the density
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HOWEVER:   Angular extrema of the density = Angular Extrema of the Dipole W
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IMPORTANT Radial conditions depend on time, therefore the 3-d spatial extrema of 
the density shift in time (they are not comoving)

THEREFORE:   Location of spatial extrema follows from the radial condition
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At r = 0 there can be a maximum or a minimum, depending 
on the sign of the second derivative.  The classification of 
the extrema (maxima, minima, saddles) in r > 0 is more 
subtle (we look at this in the next slide) 
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How can we obtain a precise location of the structures ?

If we define the dipole parameters as piecewise functions

V0

K0

X = a0 f(r)

Y = b0 f(r)

Z = c0 f(r)

Single direction for all r

The over-densities & voids can be placed in arbitrary locations

θi

φi

Different directions for each radial range



Use piecewise functions to define the Dipole Parameters so that over-
densities or voids are located in localised space partitions

Partitions  in radial shells Angular partitions  in each radial shell

Junction conditions for angular partitions: only 1st form 
(metric) is continuous, THEREFORE must treat these 

partitions as a “thin shell approximation”



W = 0
Spherical Symmetry (zero dipole)!
= one structure

W = W (r, ✓,�) 8 (r, ✓,�)
Axial-like Symmetry 
 (simple dipole = 2 structures)

W = radial piecewise in two intervals�r

4 structures =  2 radially matched dipoles 4 structures =  4 radial & angular matched dipoles

W = radial & angular piecewise in two intervals

We know that Szekeres models can describe multiple structures 



Coarse grained approximation 
(density contrast)

R. Brent Tully,!Helene Courtois, Yehuda Hoffman and Daniel 
Pomarede,     Nature 513, 71–73 (2014), “The Laniakea 
supercluster of galaxies”.



Radial peculiar 
velocities with 
respect to the 
centre of the 

local void 

O.G. Nasonova and I.D. Karachentsev, 
Astrophysics, 54, 1-14 (2011) “On the kinematics 
of the Local cosmic void”,  arXiv:1011.5985v1 
[astro-ph.CO]



Connection with 
Cosmological Perturbation 

Theory



Einstein’s equations as dynamics of 
covariant objects with respect to a 

4-velocity field

ua

hab

Covariant objects:

density

expansion 

shear 

electric Weyl

K ⌘
3R
6

spatial curvature



FLRW 
subset

{⇢, H, K}

Einstein’s eqs as 1+3 Evolution eqs
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Change variables to averages & fluctuations of covariant 
scalars:  Quasi-local scalars.

• Average function on spherical domains with non-trivial weight factor

Aq =

R
D AF dVpR
D F dVp

dVp =
p

det (hab) dr d✓ d�

relate “standard” and averaged scalars at the  
boundary of each spherical domain:

• Quasi local exact 
fluctuations

D(A) = A�Aq, �(A) =
A�Aq

Aq

Covariant objects: A = ⇢, H, K

�ab, Eab

covariant scalars

traceless symmetric tensors

Will define the FLRW background

Will define the “perturbations” as exact objects
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Linearised equations



Comparison with Linear Cosmological  Perturbations
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Reference:  Bruni et al,  Astrophys.J. 785 (2014) 2, arXiv 1307.1478v2

Evolution equations:
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Comparison of solutions

Assume linear conditions at last scattering time (near homogeneity 
and near spatial flatness)
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Deterministic initial condition  vs superposition of random modes

Obviously      is much more general than       , which must 
comply with constraints of Szekeres models. However, we 
know how        evolves well into the non-linear regime, 
whereas       is only valid in the linear regime 
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Connection with Newtonian 
Gravity



The Szekeres collapse: an exact relativistic analogue of the 
Zeldovich approximation

Zeldovich proposed a first order correction in the retain between Eulerian         and 
Lagrangian        coordinates
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Considering that the           are in general unequal, we can assume                                         ,  
leading to the following collapse   (                         )   morphologies 

⇠(A)

det(yi,j) ! 0
0  ⇠(3)  ⇠(2)  ⇠(1)

Pancake collapse: ⇠(1) ! 1 while ⇠(2) < ⇠(3) < 1,
One direction collapses, 
two directions expand

Filamentary collapse: ⇠(1), ⇠(2) ! 1 while ⇠(3) < 1,
Two direction collapse, 
one directions expands

Spherical or isotropic 
collapse:

⇠(1), ⇠(2), ⇠(3) ! 1, Three directions 
collapse



What happens in Szekeres models?

Szekeres collapse/expansion is (in general) anisotropic. It is governed by the expansion 
tensor
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Comparison between Szekeres & Zeldovich densities 
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Collapse in the directions          
expansion in  ei(1)
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How do these structures expand or collapse 

shell crossing

Pancake collapse 
(shell crossings) in 
an expanding 
background

Isotropic expansion 
at r = 0

shell crossing

big crunch

Pancake collapse 
(shell crossings) in 
a collapsing  
background

Spherical collapse 
at r = 0

big crunch

Filamentary 
collapse (without 
shell crossings) in 
a collapsing  
background

Spherical collapse 
at r = 0



Connection with Numerical 
N-body simulations



	 .	 C.S. Frenk and S.D.M. White, Ann Phys,           
524, 507534 (2012) 	



Coarse grained approximation (3d projection)



Topology & Copernican 
principle



Identify

r = 0,

local

isotropic

observer

Embedding in R4

r

✓ = ⇡/2, �



That’s all folks !

Future Work

• Use Szekeres configurations as tools to test the code in numerical N-
body simulations  

• Compute observables, fit observations (SN, BAO, redshift distortion, CMB, 
Sunyaev-Zeldovich effect, etc)

• Compare with perturbative & Newtonian. Compare with alternative 
theories  


